Cart (Loading....) | Create Account
Close category search window

AC-coupled front-end for biopotential measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Spinelli, E.M. ; Departamento de Electrotecnia, Univ. Nacional de La Plata, Argentina ; Pallas-Areny, R. ; Mayosky, M.A.

AC coupling is essential in biopotential measurements. Electrode offset potentials can be several orders of magnitude larger than the amplitudes of the biological signals of interest, thus limiting the admissible gain of a dc-coupled front end to prevent amplifier saturation. A high-gain input stage needs ac input coupling. This can be achieved by series capacitors, but in order to provide a bias path, grounded resistors are usually included, which degrade the common mode rejection ratio (CMRR). This paper proposes a novel balanced input ac-coupling network that provides a bias path without any connection to ground, thus resulting in a high CMRR. The circuit being passive, it does not limit the differential dc input voltage. Furthermore, differential signals are ac coupled, whereas common-mode voltages are dc coupled, thus allowing the closed-loop control of the dc common mode voltage by means of a driven-right-leg circuit. This makes the circuit compatible with common-mode dc shifting strategies intended for single-supply biopotential amplifiers. The proposed circuit allows the implementation of high-gain biopotential amplifiers with a reduced number of parts, thus resulting in low power consumption. An electrocardiogram amplifier built according to the proposed design achieves a CMRR of 123 dB at 50 Hz.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:50 ,  Issue: 3 )

Date of Publication:

March 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.