By Topic

Constant quality constrained rate allocation for FGS-coded video

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xi Min Zhang ; Dept. of Electr. & Comput. Eng., New Jersey Inst. of Technol., Newark, NJ, USA ; Vetro, A. ; Shi, Y.Q. ; Huifang Sun

This paper proposes an optimal rate-allocation scheme for fine-granular scalability (FGS) coded bitstreams that can achieve constant quality reconstruction of frames under a dynamic rate budget constraint. In doing so, we also aim to minimize the overall distortion at the same time. To achieve this, we propose a novel rate-distortion (R-D) labeling scheme to characterize the R-D relationship of the source coding process. Specifically, sets of R-D points are extracted during the encoding process and linear interpolation is used to estimate the actual R-D curve of the enhancement-layer signal. The extracted R-D information is then used by an enhancement-layer transcoder to determine the bits that should be allocated per frame. A sliding-window-based rate-allocation method is proposed to realize constant quality among frames. This scheme is first considered for a single FGS-coded source, then extended to operate on multiple sources. With the proposed scheme, the rate allocation can be performed in a single pass; hence, the complexity is quite low. Experimental results confirm the effectiveness of the proposed scheme under static and dynamic bandwidth conditions.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:13 ,  Issue: 2 )