By Topic

Medical diagnosis with C4.5 rule preceded by artificial neural network ensemble

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhi-Hua Zhou ; Nat. Lab. for Novel Software Technol., Nanjing Univ., China ; Yuan Jiang

Comprehensibility is very important when machine learning techniques are used in computer-aided medical diagnosis. Since an artificial neural network ensemble is composed of multiple artificial neural networks, its comprehensibility is worse than that of a single artificial neural network. In this paper, C4.5 Rule-PANE, which combines an artificial neural network ensemble with rule induction by regarding the former as a preprocess of the latter, is proposed. At first, an artificial neural network ensemble is trained. Then, a new training data set is generated by feeding the feature vectors of original training instances to the trained ensemble and replacing the expected class labels of original training instances with the class labels output from the ensemble. Additional training data may also be appended by randomly generating feature vectors and combining them with their corresponding class labels output from the ensemble. Finally, a specific rule induction approach, i.e., C4.5 Rule, is used to learn rules from the new training data set. Case studies on diabetes, hepatitis , and breast cancer show that C4.5 Rule-PANE could generate rules with strong generalization ability, which benefits from an artificial neural network ensemble, and strong comprehensibility, which benefits from rule induction.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:7 ,  Issue: 1 )