By Topic

Symbolic user-defined periodicity in temporal relational databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Terenziani, P. ; Dipt. Informatica, Universita del Piemonte Orientale, Alessandria, Italy

Calendars and periodicity play a fundamental role in many applications. Recently, some commercial databases started to support user-defined periodicity in the queries in order to provide "a human-friendly way of handling time" (see, e.g., TimeSeries in Oracle 8). On the other hand, only few relational data models support user-defined periodicity in the data, mostly using "mathematical" expressions to represent periodicity. In this paper, we propose a high-level "symbolic" language for representing user-defined periodicity which seems to us more human-oriented than mathematical ones, and we use the domain of Gadia's temporal elements in order to define its properties and its extensional semantics. We then propose a temporal relational model which supports user-defined "symbolic" periodicity (e.g., to express "on the second Monday of each month") in the validity time of tuples and also copes with frame times (e.g., "from 1/1/98 to 28/2/98"). We define the temporal counterpart of the standard operators of the relational algebra, and we introduce new temporal operators and functions. We also prove that our temporal algebra is a consistent extension of the classical (atemporal) one. Moreover, we define both a fully symbolic evaluation method for the operators on the periodicities in the validity times of tuples, which is correct but not complete, and semisymbolic one, which is correct and complete, and study their computational complexity.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:15 ,  Issue: 2 )