By Topic

Model and algorithm for efficient verification of high-assurance properties of real-time systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tsai, J.J.P. ; Dept. of Comput. Sci., Illinois Univ., Chicago, IL, USA ; Juan, E.Y.T. ; Sahay, A.

In this paper, we present a new compositional verification methodology for efficiently verifying high-assurance properties such as reachability and deadlock freedom of real-time systems. In this methodology, each component of real-time systems is initially specified as a timed automaton and it communicates with other components via synchronous and/or asynchronous communication channels. Then, each component is analyzed by a generation of its state-space graph which is formalized as a new state-space representation model called Multiset Labeled Transition Systems (MLTSs). Afterward, the state spaces of the components are hierarchically composed and simplified through a composition algorithm and a set of condensation rules, respectively, to get a condensed state space of the system. The simplified state spaces preserve equivalence with respect to deadlock and reachable states. Such equivalence is assured by our reduction theories called IOT-failure equivalence and IOT-state equivalence. To show the performance of our methodology, we developed a verification tool RT-IOTA and carried out experiments on some benchmarks such as CSMA/CD protocol, a rail-road crossing, an alternating bit-protocol, etc. Specifically, we look at the time taken to generate the statespace, the size of the state space, and the amount of reduction achieved by our condensation rules. The results demonstrate the strength of our new technique in dealing with the state-explosion problem.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:15 ,  Issue: 2 )