By Topic

MOSTVS: a new class of transient voltage suppressors to reduce voltage rating and cost of automotive power electronics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Shen, Z.J. ; University of Michigan-Dearborn

Power electronics is playing an increasingly important role in vehicle systems. The voltage rating of automotive power electronics is predominantly determined by the transient immunity requirement, which considerably exceeds the maximum operating voltages of 12V and 24V automotive power systems, and imposes a large cost penalty. In contrast, the emerging 42V systems require a much improved bus voltage regulation to maintain system affordability. In this paper, we introduce a new class of transient voltage suppressors termed as MOSTVS, which provides a more accurately controlled clamping voltage than the conventional Zener diodes and MOVs over a wide range of current and temperature. The new MOSTVS concept, based on power MOSFET and polysilicon thin-film technologies, makes it possible to relax the breakdown voltage requirement of automotive power electronics and result in significant cost reduction. Furthermore, the MOSTVS can be used in 42V systems to meet the stringent bus voltage requirement.

Published in:

Power Electronics in Transportation, 2002

Date of Conference:

24-25 Oct. 2002