By Topic

A design of neural-net based controllers with internal model structure for nonlinear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Takao, K. ; Dept. of Artificial Complex Syst. Control, Hiroshima Univ., Japan ; Yamamoto, T. ; Hinamoto, T.

Since most process systems have nonlinearities, it is necessary to consider controller design schemes to deal with nonlinear systems. In this paper, a new neural-net based controller is proposed, which has an internal model structure. The internal model consists of the linear nominal model and the neural network. The linear nominal model and the neural network respectively work for the purpose of compensating the linear and the nonlinear components included in the controlled object. The pole-assignment control system is constructed for the augmented system which is composed of the controlled object, the internal model and the linear nominal model. Finally, the effectiveness of the newly proposed control scheme is numerically evaluated on a simulation example.

Published in:

IECON 02 [Industrial Electronics Society, IEEE 2002 28th Annual Conference of the]  (Volume:3 )

Date of Conference:

5-8 Nov. 2002