Cart (Loading....) | Create Account
Close category search window
 

Receding-horizon estimation for discrete-time linear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Alessandri, A. ; Inst. of Intelligent Syst. for Autom., Nat. Res. Council of Italy, Genoa, Italy ; Baglietto, M. ; Battistelli, G.

The problem of estimating the state of a discrete-time linear system can be addressed by minimizing an estimation cost function dependent on a batch of recent measure and input vectors. This problem has been solved by introducing a receding-horizon objective function that includes also a weighted penalty term related to the prediction of the state. For such an estimator, convergence results and unbiasedness properties have been proved. The issues concerning the design of this filter are discussed in terms of the choice of the free parameters in the cost function. The performance of the proposed receding-horizon filter is evaluated and compared with other techniques by means of a numerical example.

Published in:

Automatic Control, IEEE Transactions on  (Volume:48 ,  Issue: 3 )

Date of Publication:

Mar 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.