By Topic

Parameter convergence in nonlinearly parameterized systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chengyu Cao ; Dept. of Mech. Eng., Massachusetts Inst. of Technol., Cambridge, MA, USA ; Annaswamy, A.M. ; Kojic, A.

A large class of problems in parameter estimation concerns nonlinearly parametrized systems. Over the past few years, a stability framework for estimation and control of such systems has been established. We address the issue of parameter convergence in such systems in this paper. Systems with both convex/concave and general parameterizations are considered. In the former case, sufficient conditions are derived under which parameter estimates converge to their true values using a min-max algorithm. In the latter case, to achieve parameter convergence a hierarchical min-max algorithm is proposed where the lower level consists of a min-max algorithm and the higher level component updates the bounds on the parameter region within which the unknown parameter is known to lie. Using this hierarchical algorithm, a necessary and sufficient condition is established for global parameter convergence in systems with a general nonlinear parameterization. In both cases, the conditions needed are shown to be stronger than linear persistent excitation conditions that guarantee parameter convergence in linearly parametrized systems. Explanations and examples of these conditions and simulation results are included to illustrate the nature of these conditions. A general definition of nonlinear persistent excitation that leads to parameter convergence is proposed at the end of this paper.

Published in:

Automatic Control, IEEE Transactions on  (Volume:48 ,  Issue: 3 )