Cart (Loading....) | Create Account
Close category search window

Support-vector-based least squares for learning non-linear dynamics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
de Kruif, B.J. ; Drebbel Inst. of Mechatronics, Twente Univ., Enschede, Netherlands ; de Vries, T.J.A.

A function approximator is introduced that is based on least squares support vector machines (LSSVM) and on least squares (LS). The potential indicators for the LS method are chosen as the kernel functions of all the training samples similar to LSSVM. By selecting these as indicator functions the indicators for LS can be interpret in a support vector machine setting and the curse of dimensionality can be circumvented. The indicators are included by a forward selection scheme. This makes the computational load for the training phase small. As long as the function is not approximated good enough, and the function is not overfitting the data, a new indicator is included. To test the approximator the inverse nonlinear dynamics of a linear motor are learnt. This is done by including the approximator as learning mechanism in a learning feedforward controller.

Published in:

Decision and Control, 2002, Proceedings of the 41st IEEE Conference on  (Volume:2 )

Date of Conference:

10-13 Dec. 2002

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.