Scheduled System Maintenance on December 17th, 2014:
IEEE Xplore will be upgraded between 2:00 and 5:00 PM EST (18:00 - 21:00) UTC. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Source coding exponents for zero-delay coding with finite memory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Merhav, N. ; Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa, Israel ; Kontoyiannis, I.

Fundamental limits on the source coding exponents (or large deviations performance) of zero-delay finite-memory (ZDFM) lossy source codes are studied. Our main results are the following. For any memoryless source, a suitably designed encoder that time-shares (at most two) memoryless scalar quantizers is as good as any time-varying fixed-rate ZDFM code, in that it can achieve the fastest exponential rate of decay for the probability of excess distortion. A dual result is shown to apply to the probability of excess code length, among all fixed-distortion ZDFM codes with variable rate. Finally, it is shown that if the scope is broadened to ZDFM codes with variable rate and variable distortion, then a time-invariant entropy-coded memoryless quantizer (without time sharing) is asymptotically optimal under a "fixed-slope" large-deviations criterion (introduced and motivated here in detail) corresponding to a linear combination of the code length and the distortion. These results also lead to single-letter characterizations for the source coding error exponents of ZDFM codes.

Published in:

Information Theory, IEEE Transactions on  (Volume:49 ,  Issue: 3 )