By Topic

Optimum power control for successive interference cancellation with imperfect channel estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. G. Andrews ; Electr. Eng. Dept., Stanford Univ., CA, USA ; T. H. Meng

Successive interference cancellation, in conjunction with orthogonal convolutional codes, has been shown to approach the Shannon capacity for an additive white Gaussian noise channel. However, this requires highly accurate estimates for the amplitude and phase of each user's signal. We derive an optimal power control strategy specifically designed to maximize the overall capacity under the constraint of a high degree of estimation error. This power control strategy presents a general formula of which other power control algorithms are special cases. Even with estimation error as high as 50%, capacity can be approximately doubled relative to not using interference cancellation. In addition, when properly applied to multicell mobile networks, this power control scheme can reduce the handset transmit power, and therefore other-cell interference, by more than an order of magnitude.

Published in:

IEEE Transactions on Wireless Communications  (Volume:2 ,  Issue: 2 )