We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

An improved rate-monotonic admission control and its applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lauzac, S. ; Akamai Technol., Seattle, WA, USA ; Melhem, R. ; Mosse, D.

Rate-monotonic scheduling (RMS) is a widely used real-time scheduling technique. This paper proposes RBound, a new admission control for RMS. RBound has two interesting properties. First, it achieves high processor utilization under certain conditions. We show how to obtain these conditions in a multiprocessor environment and propose a multiprocessor scheduling algorithm that achieves a near optimal processor utilization. Second, the framework developed for RBound remains close to the original RMS framework (that is, task dispatching is still done via a fixed-priority scheme based on the task periods). In particular, we show how RBound can be used to guarantee a timely recovery in the presence of faults and still achieve high processor utilization. We also show how RBound can be used to increase the processor utilization when aperiodic tasks are serviced by a priority exchange server or a deferrable server.

Published in:

Computers, IEEE Transactions on  (Volume:52 ,  Issue: 3 )