By Topic

User-directed exploration of mining space with multiple attributes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chang-shing Perng ; IBM Thomas J. Watson Res. Center, Hawthorne, NY, USA ; Haixun Wang ; Sheng Ma ; Hellerstein, J.L.

There has been a growing interest in mining frequent itemsets in relational data with multiple attributes. A key step in this approach is to select a set of attributes that group data into transactions and a separate set of attributes that labels data into items. Unsupervised and unrestricted mining, however is stymied by the combinatorial complexity and the quantity of patterns as the number of attributes grows. In this paper we focus on leveraging the semantics of the underlying data for mining frequent itemsets. For instance, there are usually taxonomies in the data schema and functional dependencies among the attributes. Domain knowledge and user preferences often have the potential to significantly reduce the exponentially growing mining space. These observations motivate the design of a user-directed data mining framework that allows such domain knowledge to guide the mining process and control the mining strategy. We show examples of tremendous reduction in computation by using domain knowledge in mining relational data with multiple attributes.

Published in:

Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE International Conference on

Date of Conference:

2002