Cart (Loading....) | Create Account
Close category search window
 

Iterative clustering of high dimensional text data augmented by local search

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dhillon, I.S. ; Dept. of Comput. Sci., Texas Univ., Austin, TX, USA ; Yuqiang Guan ; Kogan, J.

The k-means algorithm with cosine similarity, also known as the spherical k-means algorithm, is a popular method for clustering document collections. However spherical k-means can often yield qualitatively poor results, especially when cluster sizes are small, say 25-30 documents per cluster, where it tends to get stuck at a local maximum far away from the optimal solution. In this paper, we present a local search procedure, which we call 'first-variation" that refines a given clustering by incrementally moving data points between clusters, thus achieving a higher objective function value. An enhancement of first variation allows a chain of such moves in a Kernighan-Lin fashion and leads to a better local maximum. Combining the enhanced first-variation with spherical k-means yields a powerful "ping-pong" strategy that often qualitatively improves k-means clustering and is computationally efficient. We present several experimental results to highlight the improvement achieved by our proposed algorithm in clustering high-dimensional and sparse text data.

Published in:

Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE International Conference on

Date of Conference:

2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.