By Topic

Immersive volume visualization of seismic simulations: A case study of techniques invented and lessons learned

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chopra, P. ; Eng. Res. Center, Mississippi State Univ., MS, USA ; Meyer, J. ; Fernandez, A.

This paper is a documentation of techniques invented, results obtained and lessons learned while creating visualization algorithms to render outputs of large-scale seismic simulations. The objective is the development of techniques for a collaborative simulation and visualization shared between structural engineers, seismologists, and computer scientists. The computer graphics research community has been witnessing a large number of exemplary publications addressing the challenges faced while trying to visualize both large-scale surface and volumetric datasets lately. From a visualization perspective, issues like data preprocessing (simplification, sampling, filtering, etc.); rendering algorithms (surface and volume), and interaction paradigms (large-scale, highly interactive, highly immersive, etc.) have been areas of study. In this light, we outline and describe the milestones achieved in a large-scale simulation and visualization project, which opened the scope for combining existing techniques with new methods, especially in those cases where no existing methods were suitable. We elucidate the data simplification and reorganization schemes that we used, and discuss the problems we encountered and the solutions we found. We describe both desktop (high-end local as well as remote) interfaces and immersive visualization systems that we developed to employ interactive surface and volume rendering algorithms. Finally, we describe the results obtained, challenges that still need to be addressed, and ongoing efforts to meet the challenges of large-scale visualization.

Published in:

Visualization, 2002. VIS 2002. IEEE

Date of Conference:

1-1 Nov. 2002