By Topic

Stabilizing control of a high-order generator model by adaptive feedback linearization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fregene, K. ; Honeywell Inc., Minneapolis, MN, USA ; Kennedy, D.

We present an adaptive feedback linearizing control scheme for excitation control and power system stabilization. The power system is a synchronous generator which is first modeled as an input-output nonlinear discrete-time system approximated by two neural networks. Then, the controller is synthesized to adaptively compute an appropriate feedback linearizing control law at each sampling instant using estimates provided by the neural system model. This formulation simplifies the problem to that of designing a linear pole-placement controller which is itself not a neural network but is adaptive in the sense that the neural estimator adapts itself online. Additionally, the requirement for exact knowledge of the system dynamics, full state measurement, as well as other difficulties associated with feedback linearizing control for power systems are avoided in this approach. Simulations demonstrate its application to a high-order single-machine system under various conditions.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:18 ,  Issue: 1 )