By Topic

Synchronous generator model identification and parameter estimation from operating data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Karayaka, H.B. ; Dept. of Electr. Eng., Ohio State Univ., Columbus, OH, USA ; Keyhani, A. ; Heydt, G.T. ; Agrawal, B.L.
more authors

A novel technique to estimate and model parameters of a 460-MVA large steam turbine generator from operating data is presented. First, data from small excitation disturbances are used to estimate linear model armature circuit and field winding parameters of the machine. Subsequently, for each set of steady state operating data, saturable inductances Lds and Lqs are identified and modeled using nonlinear mapping functions-based estimators. Using the estimates of the armature circuit parameters, for each set of disturbance data collected at different operating conditions, the rotor body parameters of the generator are estimated using an output error method (OEM). The developed nonlinear models are validated with measurements not used in the estimation procedure.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:18 ,  Issue: 1 )