By Topic

Machine modeling and universal controller for vector-controlled induction motor drives

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yen-Shin Lai ; Dept. of Electr. Eng., Nat. Taipei Univ. of Technol., Taiwan

Developments of machine model and a universal controller for vector-controlled induction motor drives are presented in this paper. The machine representations associated with vector-control methods referring to various frames, including stator, rotor, and air-gap flux frames, can be derived simply by selecting different state variables; thereby clearly identifying the relationship between machine modeling and vector control. Moreover, a universal vector controller for induction motor drives fed by a voltage-controlled voltage source inverter is presented. It is shown in this paper that various vector controllers, including rotor flux-oriented controller, stator flux-oriented controller and air-gap flux-oriented controller, can be realized by simply changing few parameters. It is demonstrated by experimental results that the developed universal vector controller for various vector-control approaches can be implemented using the same hardware with a minor change to software associated with parameters; and thereby confirming the theoretical analysis.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:18 ,  Issue: 1 )