By Topic

Algon: a framework for supporting comparison of distributed algorithm performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Renaud, K. ; Dept. of Comput. Sci., Glasgow Univ., UK ; Lo, J. ; Bishop, J. ; van Zyl, P.
more authors

Programmers often need to use distributed algorithms to add non-functional behaviour such as mutual exclusion, deadlock detection and termination, to a distributed application. They find the selection and implementation of these algorithms daunting. Consequently, they have no idea which algorithm will be best for their particular application. To address this difficulty the Algon framework provides a set of pre-coded distributed algorithms for programmers to choose from, and provides a special performance display tool to support choice between algorithms. The performance tool is discussed. The developer of a distributed application will be able to observe the performance of each of the available algorithms according to a set of of widely accepted and easily-understandable performance metrics and compare and contrast the behaviour of the algorithms to support an informed choice. The strength of the Algon framework is that it does not require a working knowledge of algorithmic theory or functionality in order for the developer to use the algorithms.

Published in:

Parallel, Distributed and Network-Based Processing, 2003. Proceedings. Eleventh Euromicro Conference on

Date of Conference:

5-7 Feb. 2003