Cart (Loading....) | Create Account
Close category search window
 

MRF model-based algorithms for image segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dubes, R.C. ; Dept. of Comput. Sci., Michigan State Univ., East Lansing, MI, USA ; Jain, A.K. ; Nadabar, S.G. ; Chen, C.C.

The authors empirically compare three algorithms for segmenting simple, noisy images: simulated annealing (SA), iterated conditional modes (ICM), and maximizer of the posterior marginals (MPM). All use Markov random field (MRF) models to include prior contextual information. The comparison is based on artificial binary images which are degraded by Gaussian noise. Robustness is tested with correlated noise and with object and background textured. The ICM algorithm is evaluated when the degradation and model parameters must be estimated, in both supervised and unsupervised modes and on two real images. The results are assessed by visual inspection and through a numerical criterion. It is concluded that contextual information from MRF models improves segmentation when the number of categories and the degradation model are known and that parameters can be effectively estimated. None of the three algorithms is consistently best, but the ICM algorithm is the most robust. The energy of the a posteriori distribution is not always minimized at the best segmentation

Published in:

Pattern Recognition, 1990. Proceedings., 10th International Conference on  (Volume:i )

Date of Conference:

16-21 Jun 1990

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.