Cart (Loading....) | Create Account
Close category search window
 

Unsupervised feature selection applied to content-based retrieval of lung images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Dy, J.G. ; Dept. of Electr. & Comput. Eng., Northeastern Univ., Boston, MA, USA ; Brodley, C.E. ; Kak, A. ; Broderick, L.S.
more authors

This paper describes a new hierarchical approach to content-based image retrieval called the "customized-queries" approach (CQA). Contrary to the single feature vector approach which tries to classify the query and retrieve similar images in one step, CQA uses multiple feature sets and a two-step approach to retrieval. The first step classifies the query according to the class labels of the images using the features that best discriminate the classes. The second step then retrieves the most similar images within the predicted class using the features customized to distinguish "subclasses" within that class. Needing to find the customized feature subset for each class led us to investigate feature selection for unsupervised learning. As a result, we developed a new algorithm called FSSEM (feature subset selection using expectation-maximization clustering). We applied our approach to a database of high resolution computed tomography lung images and show that CQA radically improves the retrieval precision over the single feature vector approach. To determine whether our CBIR system is helpful to physicians, we conducted an evaluation trial with eight radiologists. The results show that our system using CQA retrieval doubled the doctors' diagnostic accuracy.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:25 ,  Issue: 3 )

Date of Publication:

March 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.