By Topic

Analysis of the hierarchical LMS algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Nascimento, V.H. ; Electron. Syst. Eng. Dept., Univ. de Sao Paulo, Brazil

We analyze the hierarchical least mean-square (HLMS) algorithm, providing expressions for its steady-state mean-square error (MSE). We find conditions for the hierarchical structure to be equivalent to the optimal (full-length) Wiener solution. When these conditions are not satisfied, we show that HLMS will compute biased estimates. Our analysis also shows that even when these conditions hold, the MSE obtained using HLMS may be much larger than that obtained using LMS, since the potentially large MSEs at the subfilters in the first hierarchical level directly affect the output MSE.

Published in:

Signal Processing Letters, IEEE  (Volume:10 ,  Issue: 3 )