By Topic

A first-order statistical method for channel estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhou, G.T. ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Viberg, M. ; McKelvey, T.

Multipath is a major impairment in a wireless communications environment, and channel estimation algorithms are of interest. We propose a superimposed periodic pilot scheme for finite-impulse response (FIR) channel estimation. A simple first-order statistic is used, and any FIR channel can be estimated. There is no loss of information rate but a controllable increase in transmission power. We derive the variance expression of our linear channel estimate and compare with the Cramer-Rao bound. Numerical examples illustrate the effectiveness of the proposed method.

Published in:

Signal Processing Letters, IEEE  (Volume:10 ,  Issue: 3 )