By Topic

A unified approach to reduce SOC test data volume, scan power and testing time

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chandra, A. ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC, USA ; Chakrabarty, K.

We present a test resource partitioning (TRP) technique that simultaneously reduces test data volume, test application time, and scan power. The proposed approach is based on the use of alternating run-length codes for test data compression. We present a formal analysis of the amount of data compression obtained using alternating run-length codes. We show that a careful mapping of the don't-cares in precomputed test sets to 1's and 0's leads to significant savings in peak and average power, without requiring either a slower scan clock or blocking logic in the scan cells. We present a rigorous analysis to show that the proposed TRP technique reduces testing time compared to a conventional scan-based scheme. We also improve upon prior work on run-length coding by showing that test sets that minimize switching activity during scan shifting can be more efficiently compressed using alternating run-length codes. Experimental results for the larger ISCAS89 benchmarks and an IBM production circuit show that reduced test data volume, test application time, and low power-scan testing can indeed be achieved in all cases.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:22 ,  Issue: 3 )