Cart (Loading....) | Create Account
Close category search window
 

A review of hydrodynamic and energy-transport models for semiconductor device simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Grasser, T. ; Inst. for Microelectron., Tech. Univ. Vienna, Austria ; Ting-Wei Tang ; Kosina, H. ; Selberherr, S.

Since Stratton published his famous paper four decades ago, various transport models have been proposed which account for the average carrier energy or temperature in one way or another. The need for such transport models arose because the traditionally used drift-diffusion model cannot capture nonlocal effects which gained increasing importance in modern miniaturized semiconductor devices. In the derivation of these models from Boltzmann's transport equation, several assumptions have to be made in order to obtain a tractable equation set. Although these assumptions may differ significantly, the resulting final models show various similarities, which has frequently led to confusion. We give a detailed review on this subject, highlighting the differences and similarities between the models, and we shed some light on the critical issues associated with higher order transport models.

Published in:

Proceedings of the IEEE  (Volume:91 ,  Issue: 2 )

Date of Publication:

Feb 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.