Cart (Loading....) | Create Account
Close category search window
 

Absorption, carrier lifetime, and gain in InAs-GaAs quantum-dot infrared photodetectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Kochman, Boaz ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Michigan, Ann Arbor, MI, USA ; Stiff-Roberts, A.D. ; Chakrabarti, S. ; Phillips, J.D.
more authors

Quantum-dot infrared photodetectors (QDIPs) are being studied extensively for mid-wavelength and long-wavelength infrared detection because they offer normal-incidence, high-temperature, multispectral operation. Intersubband absorption, carrier lifetime, and gain are parameters that need to be better characterized, understood, and controlled in order to realize high-performance QDIPs. An eight-band k·p model is used to calculate polarization-dependent intersubband absorption. The calculated trend in absorption has been compared with measured data. In addition, a Monte-Carlo simulation is used to calculate the effective carrier lifetime in detectors, allowing the calculation of gain in QDIPs as a function of bias. The calculated gain values can be fitted well with experimental data, revealing that the gain in these devices consists of two mechanisms: photoconductive gain and avalanche gain, where the latter is less dominant at normal operating biases.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:39 ,  Issue: 3 )

Date of Publication:

Mar 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.