Cart (Loading....) | Create Account
Close category search window

Experimental analysis of a broadly tunable InGaAsP laser with compositionally varied quantum wells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Woodworth, S.C. ; Dept. of Eng. Phys., McMaster Univ., Hamilton, Ont., Canada ; Cassidy, Daniel T. ; Hamp, Michael J.

Custom-designed InGaAsP lasers have been fabricated, tested, and show a broad spectral output at a bias current of 240 mA. The Fabry-Perot ridge waveguide lasers were grown with one 80-Å and five 100-Å quantum wells in the active region. A different material composition was used for each well and this provided contributions to the gain profile over a broad wavelength range. A 1400-μm cavity length laser was found to operate in the spectral region from 1475 to 1650 nm and single-mode operation on the individual Fabry-Perot modes of the uncoated laser was achieved over a 172-nm tuning range using a diffractive optical element short external cavity. The side-mode suppression ratio was measured to be above 30 dB at all wavelengths within the tuning range. Complete spectral coverage, in overlapping short segments, with the device is possible using temperature tuning.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:39 ,  Issue: 3 )

Date of Publication:

Mar 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.