By Topic

Global optimization methods for designing and training neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Yamazaki ; Center of Informatics, Univ. Fed. de Pernambuco, Recife, Brazil ; T. B. Ludermir ; M. C. P. de Souto

This paper shows results of two approaches for the optimization of neural networks: one uses simulated annealing for optimizing both architectures and weights combined with backpropagation for fine tuning, while the other uses tabu search for the same purpose. Both approaches generate networks with good generalization performance (mean classification error of 1.68% for simulated annealing and 0.64% for tabu search) and low complexity (mean number of connections of 11.15 out of 36 for simulated annealing and 11.62 out of 36 for tabu search) for an odor recognition task in an artificial nose.

Published in:

Neural Networks, 2002. SBRN 2002. Proceedings. VII Brazilian Symposium on

Date of Conference: