By Topic

A clustering based approach to efficient image retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ruofei Zhang ; Dept. of Comput. Sci., State Univ. of New York, Binghamton, NY, USA ; Zhongfei Zhang

This paper addresses the issue of effective and efficient content based image retrieval by presenting a novel indexing and retrieval methodology that integrates color, texture, and shape information for the indexing and retrieval, and applies these features in regions obtained through unsupervised segmentation, as opposed to applying them to the whole image domain. In order to address the typical color feature "inaccuracy" problem in the literature, fuzzy logic is applied to the traditional color histogram to solve for the problem to a certain degree. The similarity is defined through a balanced combination between global and regional similarity measures incorporating all the features. In order to further improve the retrieval efficiency, a secondary clustering technique is developed and employed to significantly save query processing time without compromising the retrieval precision. An implemented prototype system has demonstrated a promising retrieval performance for a test database containing 2000 general-purpose color images, as compared with its peer systems in the literature.

Published in:

Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings. 14th IEEE International Conference on

Date of Conference: