By Topic

Mining association rules in text databases using multipass with inverted hashing and pruning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Holt, J.D. ; Dept. of Comput. Sci. & Eng., Wright State Univ., Dayton, OH, USA ; Chung, S.M.

In this paper, we propose a new algorithm named multipass with inverted hashing and pruning (MIHP) for mining association rules between words in text databases. The characteristics of text databases are quite different from those of retail transaction databases, and existing mining algorithms cannot handle text databases efficiently because of the large number of itemsets (i.e., words) that need to be counted. Two well-known mining algorithms, the apriori algorithm and the direct hashing and pruning (DHP) algorithm, are evaluated in the context of mining text databases, and are compared with the proposed MIHP algorithm. It has been shown that the MIHP algorithm performs better for large text databases.

Published in:

Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings. 14th IEEE International Conference on

Date of Conference: