By Topic

Data mining for selective visualization of large spatial datasets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sekhar, S. ; Comput. Sci. & Eng. Dept., Minnesota Univ., MN, USA ; Chang-Tien Lu ; Pusheng Zhang ; Rulin Liu

Data mining is the process of extracting implicit, valuable, and interesting information from large sets of data. Visualization is the process of visually exploring data for pattern and trend analysis, and it is a common method of browsing spatial datasets to look for patterns. However the growing volume of spatial datasets make it difficult for humans to browse such datasets in their entirety, and data mining algorithms are needed to filter out large uninteresting parts of spatial datasets. We construct a web-based visualization software package for observing the summarization of spatial patterns and temporal trends. We also present data mining algorithms for filtering out vast parts of datasets for spatial outlier patterns. The algorithms were implemented and tested with a real-world set of Minneapolis-St. Paul (Twin Cities) traffic data.

Published in:

Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings. 14th IEEE International Conference on

Date of Conference: