By Topic

Learning a semantic space from user's relevance feedback for image retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xiaofei He ; Comput. Sci. Dept., Univ. of Chicago, IL, USA ; King, O. ; Wei-Ying Ma ; Mingjing Li
more authors

As current methods for content-based retrieval are incapable of capturing the semantics of images, we experiment with using spectral methods to infer a semantic space from user's relevance feedback, so that our system will gradually improve its retrieval performance through accumulated user interactions. In addition to the long-term learning process, we also model the traditional approaches to query refinement using relevance feedback as a short-term learning process. The proposed short- and long-term learning frameworks have been integrated into an image retrieval system. Experimental results on a large collection of images have shown the effectiveness and robustness of our proposed algorithms.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:13 ,  Issue: 1 )