By Topic

Lightweight containment for high-energy rotating machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Strubhar, J.L. ; Austin Center for Electromech., Univ. of Texas, Austin, TX, USA ; Thompson, R.C. ; Pak, T.T. ; Zierer, J.J.
more authors

Developed a lightweight containment system for high-speed composite rotors. The containment device, consisting of a rotatable, composite structure, has been demonstrated to contain the high-energy release from a rotor burst event and is applicable to composite rotors for pulsed power applications. The most important aspect of this design is that the free-floating containment structure dissipates the major loads (radial, torque, and axial) encountered during the burst event, greatly reducing the loads that pass through the stator structure to its attachments. The design results in significant system-level weight savings for the entire rotating machine when compared to a system with an all-metallic containment. Of equal interest to the containment design, the experimental design and instrumentation was very challenging and resulted in significant lessons learned. This paper describes the containment system design, rotor burst test setup, instrumentation for measuring loads induced by the burst event, and a detailed explanation of the successful containment test results and conclusions.

Published in:

Magnetics, IEEE Transactions on  (Volume:39 ,  Issue: 1 )