By Topic

Blind constant modulus equalization via convex optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
B. Mariere ; Dept. of Electr. & Comput. Eng., McMaster Univ., Hamilton, Ont., Canada ; Zhi-Quan Luo ; T. N. Davidson

In this paper, we formulate the problem of blind equalization of constant modulus (CM) signals as a convex optimization problem. The convex formulation is obtained by performing an algebraic transformation on the direct formulation of the CM equalization problem. Using this transformation, the original nonconvex CM equalization formulation is turned into a convex semidefinite program (SDP) that can be efficiently solved using interior point methods. Our SDP formulation is applicable to baud spaced equalization as well as fractionally spaced equalization. Performance analysis shows that the expected distance between the equalizer obtained by the SDP approach and the optimal equalizer in the noise-free case converges to zero exponentially as the signal-to-noise ratio (SNR) increases. In addition, simulations suggest that our method performs better than standard methods while requiring significantly fewer data samples.

Published in:

IEEE Transactions on Signal Processing  (Volume:51 ,  Issue: 3 )