Cart (Loading....) | Create Account
Close category search window
 

Linear regression based Bayesian predictive classification for speech recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jen-Tzung Chien ; Dept. of Comput. Sci. & Inf. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan

The uncertainty in parameter estimation due to the adverse environments deteriorates the classification performance for speech recognition. It becomes crucial to incorporate the parameter uncertainty into decision so that the classification robustness can be assured. We propose a novel linear regression based Bayesian predictive classification (LRBPC) for robust speech recognition. This framework is constructed under the paradigm of linear regression adaptation of speech hidden Markov models (HMMs). Because the regression mapping between HMMs and adaptation data is ill posed, we properly characterize the uncertainty of regression parameters using a joint Gaussian distribution . A closed-form predictive distribution can be derived to set up the LRBPC decision for speech recognition. Such decision is robust compared to the plug-in maximum a posteriori (MAP) decision adopted in the maximum likelihood linear regression (MLLR) and MAP linear regression (MAPLR). Since the specified distribution belongs to the conjugate prior family, the evolutionary hyperparameters are established. With the statistically rich hyperparameters, the LRBPC achieves decision robustness. In the experiments, we find that LRBPC decision in cases of general linear regression as well as single variable linear regression attains significantly better recognition performance than MLLR and MAPLR adaptation.

Published in:

Speech and Audio Processing, IEEE Transactions on  (Volume:11 ,  Issue: 1 )

Date of Publication:

Jan 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.