By Topic

Wavelet-based texture analysis and synthesis using hidden Markov models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Guoliang Fan ; Dept. of Electr. & Comput. Eng., Delaware Univ., Newark, DE, USA ; Xiang-Gen Xia

Wavelet-domain hidden Markov models (HMMs), in particular, hidden Markov tree (HMT), were recently proposed and applied to image processing, where it was usually assumed that three subbands of the two-dimensional discrete wavelet transform (DWT), i.e., HL, LH, and HH, are independent. In this paper, we study wavelet-based texture analysis and synthesis using HMMs. Particularly, we develop a new HMM, called HMT-3S, for statistical texture characterization in the wavelet domain. In addition to the joint statistics captured by HMT, the new HMT-3S can also exploit the cross correlation across DWT subbands. Meanwhile, HMT-3S can be characterized by using the graphical grouping technique, and has the same tree structure as HMT. The proposed HMT-3S is applied to texture analysis, including classification and segmentation, and texture synthesis with improved performance over HMT. Specifically, for texture classification, we study four wavelet-based methods, and experimental results show that HMT-3S provides the highest percentage of correct classification of over 95% upon a set of 55 Brodatz textures. For texture segmentation, we demonstrate that more accurate texture characterization from HMT-3S allows the significant improvements in terms of both classification accuracy and boundary localization. For texture synthesis, we develop an iterative maximum likelihood-based texture synthesis algorithm which adopts HMT or HMT-3S to impose the joint statistics of the texture DWT, and it is shown that the new RMT-3S enables more visually similar results than HMT does.

Published in:

IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications  (Volume:50 ,  Issue: 1 )