By Topic

Comparison of various safety guidelines for electronic article surveillance devices with pulsed magnetic fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gang Kang ; Dept. of Electr. & Comput. Eng., Utah Univ., Salt Lake City, UT, USA ; Gandhi, O.P.

The paper uses the two methods suggested in both the ICNIRP and proposed IEEE safety guidelines for compliance testing of security systems based on time-varying magnetic fields being introduced for electronic article surveillance (EAS), radio-frequency identification, and other applications. For nonsinusoidal pulses that are often used, the two procedures are to treat the exposure as a multifrequency exposure with various frequency components or to calculate the peak induced current densities or electric fields treating the highest of the pulses of duration tp as a single frequency, half sinusoid of the same duration and frequency 1/(2tp). Using either of the procedures, the induced current densities (J) or electric fields (E) are compared to the basic restrictions on J or E for compliance testing. Using a heterogeneous, tissue-classified anatomic model of the human body, we calculate the induced J and E for the various tissues for a realistic, EAS system for two typical nonsinusoidal pulses to show that the two methods give substantially different results. While the approximate but simpler method of treating the pulse as a half sinusoid results in peak induced J or E that may be compliant with safety guidelines, the rigorous method of treating such exposures as multifrequency exposures gives induced current densities or electric fields that may be up to twice as large, thus making such systems potentially noncompliant with the safety guidelines. Since it is more accurate, it is suggested that safety assessment based on the Fourier analysis leading to multifrequency components be used for compliance testing of such devices.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:50 ,  Issue: 1 )