By Topic

A software package for the decomposition of long-term multichannel EMG signals using wavelet coefficients

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zennaro, D. ; Inst. of Hygiene & Appl. Physiol., Swiss Fed. Inst. of Technol., Zurich, Switzerland ; Wellig, P. ; Koch, V.M. ; Moschytz, George S.
more authors

This paper presents a method to decompose multichannel long-term intramuscular electromyogram (EMG) signals. In contrast to existing decomposition methods which only support short registration periods or single-channel recordings of signals of constant muscle effort, the decomposition software EMG-LODEC (ElectroMyoGram LOng-term DEComposition) is especially designed for multichannel long-term recordings of signals of slight muscle movements. A wavelet-based, hierarchical cluster analysis algorithm estimates the number of classes [motor units (MUs)], distinguishes single MUAPs from superpositions, and sets up the shape of the template for each class. Using three channels and a weighted averaging method to track action potential (AP) shape changes improve the analysis. In the last step, nonclassified segments, i.e., segments containing superimposed APs, are decomposed into their units using class-mean signals. Based on experiments on simulated and long-term recorded EMG signals, our software is capable of providing reliable decompositions with satisfying accuracy. EMG-LODEC is suitable for the study of MU discharge patterns and recruitment order in healthy subjects and patients during long-term measurements.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:50 ,  Issue: 1 )