By Topic

Effects of experimental and modeling errors on electrocardiographic inverse formulations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cheng, L.K. ; Bioeng. Inst., Auckland Univ., New Zealand ; Bodley, J.M. ; Pullan, A.J.

The inverse problem of electrocardiology aims to reconstruct the electrical activity occurring within the heart using information obtained noninvasively on the body surface. Potentials obtained on the torso surface can be used as input for the inverse problem and an electrical image of the heart obtained. There are a number of different inverse algorithms currently used to produce electrical images of the heart. By performing a detailed simulation study, we compare the performances of epicardial potential (Tikhonov, truncated singular value decomposition (TSVD), and Greensite) and myocardial activation-based (critical point) inverse simulations along with different methods of choosing the appropriate level of regularization (optimal, L-curve, composite residual and smoothing operator, zero-crossing) to apply to each of these inverse methods. We also examine the effects of a variety of signal error, material property error, geometric error and a combination of these errors on each of the electrocardiographic inverse algorithms. Results from the simulation study show that the activation-based method is able to produce solutions which are more accurate and stable than potential-based methods especially in the presence of correlated errors such as geometric uncertainty. In general, the Greensite-Tikhonov method produced the most realistic potential-based solutions while the zero-crossing and L-curve were the preferred method for determining the regularization parameter. The presence of signal or material property error has little effect on the inverse solutions when compared with the large errors which resulted from the presence of any geometric error. In the presence of combined Gaussian and correlated errors representing conditions which may be encountered in an experimental or clinical environment, there was less variability between potential-based solutions produced by each of the inverse algorithms.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:50 ,  Issue: 1 )