By Topic

Effective on-chip inductance modeling for multiple signal lines and application to repeater insertion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Yu Cao ; Dept. of Electr. Eng. & Comput. Sci., Univ. of California, Berkeley, CA, USA ; Xuejue Huang ; Norman H.Chang ; Shen Lin
more authors

/sup A/ new approach to handle inductance effects for multiple signal lines is presented. The worst-case switching pattern is first identified. Then a numerical approach is used to model the effective loop inductance (L/sub eff/) for multiple lines. Based on a look-up table for L/sub eff/, an equivalent single line model can be generated to decouple a specific signal line from the others to perform static timing analysis. Compared to the use of full RLC netlists for multiple lines, this approach greatly improves the computational efficiency and maintains accuracy for timing and signal integrity analysis. We apply these models to repeater insertion in critical paths and find that, for a single line, the RLC model minimizes delay with fewer number of repeaters than RC model. However, for multiple lines, we find that same number of repeaters is inserted for optimal delay according to both the RC and RLC models.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:10 ,  Issue: 6 )