By Topic

Managing on-chip inductive effects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Massoud, Y. ; Synopsys Inc., Mountain View, CA, USA ; Majors, S. ; Kawa, J. ; Bustami, T.
more authors

With process technology and functional integration advancing steadily, chips are continuing to grow in area while critical dimensions are shrinking. This has led to the emergence of on-chip inductance to be a factor whose effect on performance and on signal integrity has to be managed by chip designers and has to be sometimes traded off against other performance parameters. In this paper, we cover several techniques to reduce on-chip inductance which in turn improve timing predictability and reduce signal delay and crosstalk noise. We present experimental results obtained from simulations of a typical high performance bus structure and a clock tree structure to examine the effectiveness of some of the different inductance reduction techniques.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:10 ,  Issue: 6 )