Cart (Loading....) | Create Account
Close category search window
 

Modeling of argon discharge characteristics of planar-type surface wave plasmas in an electron fluid model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Toba, T. ; Dept. of Electr. Eng., Univ. of Tokyo, Japan ; Katsurai, Makoto

The planar-type surface wave plasma (SWP) device permits the generation of high-density and uniform processing plasmas via 2.45-GHz microwave power without the application of an external magnetic field. In the present study, the discharge characteristics in the SWP device were analyzed using a two-dimensional numerical simulation code, and the results were compared with experimental observations. The simulation code is based on the finite-difference time-domain (FDTD) method for the microwave field and on the electron fluid model for the argon discharge plasma. Experimental measurements were performed, and they showed that the surface-wave discharge at a filling pressure of 10-100 mtorr has characteristic electron-density distributions that have a peak at approximately 2 cm from the surface. This characteristic of the electron density profiles, as well as the electron temperature profiles in the plasma, is reproduced by the simulation code, albeit with some discrepancies. In order to reduce the effects of these discrepancies, intentional changes in the electron heat conductivity were introduced, and the adiabatic assumption was found to result in a reasonable electron temperature profile. The effects of the alumina window thickness were also investigated in the simulation.

Published in:

Plasma Science, IEEE Transactions on  (Volume:30 ,  Issue: 6 )

Date of Publication:

Dec 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.