By Topic

Application of actor-critic learning algorithm for optimal bidding problem of a Genco

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

The optimal bidding for Genco in a deregulated power market is an involved task. The problem is formulated in the framework of Markov decision process (MDP), a discrete stochastic optimization method. When the time span considered is 24 h, the temporal difference method becomes attractive for application. The cumulative profit over the span is the objective function to be optimized. The temporal difference technique and actor-critic learning algorithm are employed. An optimal strategy is devised to maximize the profit. The market-clearing system is included in the formulation. Simulation cases of three, seven, and ten participants are considered and the obtained results are discussed.

Published in:

IEEE Transactions on Power Systems  (Volume:18 ,  Issue: 1 )