By Topic

Design, fabrication, and operation of a high-energy liner implosion experiment at 16 megamperes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

43 Author(s)
P. J. Turchi ; Air Force Res. Lab., Kirtland AFB, NM, USA ; K. Alvey ; C. Adams ; B. Anderson
more authors

We discuss the design, fabrication, and operation of a liner implosion system at peak currents of 16 MA. Liners of 1100 aluminum, with initial length, radius, and thickness of 4 cm, 5 cm, and 1 mm, respectively, implode under the action of an axial current, rising in 8 μs. Fields on conductor surfaces exceed 0.6 MG. Design and fabrication issues that were successfully addressed include: Pulsed Power-especially current joints at high magnetic fields and the possibility of electrical breakdown at connection of liner cassette insulator to bank insulation; Liner Physics-including the angle needed to maintain current contact between liner and glide-plane/electrode without jetting or buckling; Diagnostics-X-radiography through cassette insulator and outer conductor without shrapnel damage to film.

Published in:

IEEE Transactions on Plasma Science  (Volume:30 ,  Issue: 5 )