By Topic

Incremental compilation for parallel logic verification systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tessier, R. ; Dept. of Electr. & Comput. Eng., Univ. of Massachusetts, Amherst, MA, USA ; Jana, S.

Although simulation remains an important part of application-specific integrated circuit (ASIC) validation, hardware-assisted parallel verification is becoming a larger part of the overall ASIC verification flow. In this paper, we describe and analyze a set of incremental compilation steps that can be directly applied to a range of parallel logic verification hardware, including logic emulators. Important aspects of this work include the formulation and analysis of two incremental design mapping steps: the partitioning of newly added design logic onto multiple logic processors and the communication scheduling of newly added design signals between logic processors. To validate our incremental compilation techniques, the developed mapping heuristics have been integrated into the compilation flow for a field-programmable gate-array-based Ikos VirtuaLogic emulator . The modified compiler has been applied to five large benchmark circuits that have been synthesized from register-transfer level and mapped to the emulator. It is shown that our incremental approach reduces verification compile time for modified designs by up to a factor of five versus complete design recompilation for benchmarks of over 100 000 gates. In most cases, verification run-time following incremental compilation of a modified design matches the performance achieved with complete design recompilation.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:10 ,  Issue: 5 )