By Topic

Electrical and optical clock distribution networks for gigascale microprocessors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mule', A.V. ; Microelectron. Res. Center, Georgia Inst. of Technol., Atlanta, GA, USA ; Glytsis, Elias N. ; Gaylord, T.K. ; Meindl, J.D.

A summary of electrical and optical approaches to clock distribution within high-performance microprocessors is presented. System-level properties of intrachip electrical clock distribution networks corresponding to three microprocessor families are summarized. It is found that global clock interconnect performance and short-term jitter present the greatest challenges to the continued use of conventional clock distribution methodologies. An extrapolation of trends describing the percentage of clock period consumed by global skew and short-term jitter identifies the 32-nm technology generation of the 2002 International Technology Roadmap for Semiconductors (ITRS) as the first technology generation within which alternate methods of clock distribution may be warranted. Research efforts investigating interboard through intrachip optical clock distribution are also summarized. An optical distribution network compatible with high volume manufacturing in conjunction with a suitable means of providing optical-to-electrical signal conversion comprise the two fundamental challenges facing successful implementation of an optical clock distribution network. It is found that a global guided-wave distribution capable of efficient input and output coupling of optical power is required to meet the first challenge. The identification of a suitable means of optical-to-electrical conversion, however, remains an active topic of research.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:10 ,  Issue: 5 )