By Topic

Minimizing memory access energy in embedded systems by selective instruction compression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Benini, L. ; Dipt. di Elettronica, Informatica e Sistemistica, Univ. di Bologna, Italy ; Macii, A. ; Macii, E. ; Poncino, M.

We propose a technique for reducing the energy spent in the memory-processor interface of an embedded system during the execution of firmware code. The method is based on the idea of compressing the most commonly executed instructions so as to reduce the energy dissipated during memory access. Instruction decompression is performed on-the-fly by a hardware block located between processor and memory: No changes to the processor architecture are required. Hence, our technique is well suited for systems employing IP cores whose internal architecture cannot be modified. We describe a number of decompression schemes and architectures that effectively trade off hardware complexity and static code size increase for memory energy and bandwidth reduction, as proved by the experimental data we have collected by executing several test programs on different design templates.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:10 ,  Issue: 5 )