By Topic

Qualitative reasoning based on fuzzy relative orders of magnitude

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. H. Ali ; Inst. d'Informatique, Univ. Mouloud Mammeri, Tizi-Ouzou, Algeria ; D. Dubois ; H. Prade

This paper proposes a fuzzy set-based approach for handling relative orders of magnitude stated in terms of closeness and negligibility relations. At the semantic level, these relations are represented by means of fuzzy relations controlled by tolerance parameters. A set of sound inference rules, involving the tolerance parameters, is provided, in full accordance with the combination/projection principle underlying the approximate reasoning method of Zadeh. These rules ensure a local propagation of fuzzy closeness and negligibility relations. A numerical semantics is then attached to the symbolic computation process. Required properties of the tolerance parameter are investigated, in order to preserve the validity of the produced conclusions. The effect of the chaining of rules in the inference process can be controlled through the gradual deterioration of closeness and negligibility relations involved in the produced conclusions. Finally, qualitative reasoning based on fuzzy closeness and negligibility relations is used for simplifying equations and solving them in an approximate way, as often done by engineers who reason about a mathematical model. The problem of handling qualitative probabilities in reasoning under uncertainty is also investigated in this perspective.

Published in:

IEEE Transactions on Fuzzy Systems  (Volume:11 ,  Issue: 1 )