Cart (Loading....) | Create Account
Close category search window
 

Optimization of cyclic production systems: a heuristic approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chauvet, F. ; Bouygues Telecom, Velizy, France ; Herrmann, J.W. ; Proth, J.-M.

In this paper, the expression "production systems" refers to flow shops, job shops, assembly systems, Kanban systems, and, in general, to any discrete event system which transforms raw material and/or components into products and/or components. Such a system is said to be cyclic if it provides the same sequence of products indefinitely. A schedule of a cyclic production system is defined as soon as the starting time of each operation on the related resource is known. It has been shown that, whatever the feasible schedule applied to the cyclic production system, it is always possible to fully utilize the bottleneck resource. In other words, it is always possible to maximize the throughput of such a system. As a consequence, we aim at finding the schedule which permits to maximize the throughput with a work in process as small as possible. We propose a heuristic approach based on Petri nets to find a near-optimal, if not optimal, solution. We also give a sufficient condition for a solution to be optimal.

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:19 ,  Issue: 1 )

Date of Publication:

Feb 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.